Showing posts with label MOTIVASI. Show all posts
Showing posts with label MOTIVASI. Show all posts

Wednesday, 20 April 2016

// // Leave a Comment

apa itu matematika / matematika adalah


 APA SIH ITU MTK ATAU MATEMATIKA ATAU METEKE heheheh yo kita tengok yu !!



Matematika (dari bahasa Yunani: μαθηματικά - mathēmatiká) adalah studi besaran, struktur, ruang, dan perubahan. Para matematikawan mencari berbagai pola,[2][3] merumuskan konjektur baru, dan membangun kebenaran melalui metode deduksi yang ketat diturunkan dari aksioma-aksioma dan definisi-definisi yang bersesuaian.[4]
Terjadi perdebatan tentang apakah objek-objek matematika seperti bilangan dan titik sudah ada di semesta, jadi ditemukan, atau ciptaan manusia. Seorang matematikawan Benjamin Peirce menyebut matematika sebagai "ilmu yang menggambarkan simpulan-simpulan yang penting".[5] Namun, walau matematika pada kenyataannya sangat bermanfaat bagi kehidupan, perkembangan sains dan teknologi, sampai upaya melestarikan alam, matematika hidup di alam gagasan, bukan di realita atau kenyataan. Dengan tepat, Albert Einstein menyatakan bahwa "sejauh hukum-hukum matematika merujuk kepada kenyataan, mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan."[6] Makna dari "Matematika tak merujuk kepada kenyataan" menyampaikan pesan bahwa gagasan matematika itu ideal dan steril atau terhindar dari pengaruh manusia. Uniknya, kebebasannya dari kenyataan dan pengaruh manusia ini nantinya justru memungkinkan penyimpulan pernyataan bahwa semesta ini merupakan sebuah struktur matematika, menurut Max Tegmark. Jika kita percaya bahwa realita di luar semesta ini haruslah bebas dari pengaruh manusia, maka harus struktur matematika lah semesta itu.
Melalui penggunaan penalaran logika dan abstraksi, matematika berkembang dari pencacahan, perhitungan, pengukuran, dan pengkajian sistematis terhadap bangun dan pergerakan benda-benda fisika. Matematika praktis mewujud dalam kegiatan manusia sejak adanya rekaman tertulis. Argumentasi matematika yang ketat pertama muncul di dalam Matematika Yunani, terutama di dalam karya Euklides, Elemen.
Matematika selalu berkembang, misalnya di Tiongkok pada tahun 300 SM, di India pada tahun 100 M, dan di Arab pada tahun 800 M, hingga zaman Renaisans, ketika temuan baru matematika berinteraksi dengan penemuan ilmiah baru yang mengarah pada peningkatan yang cepat di dalam laju penemuan matematika yang berlanjut hingga kini.[7]
Kini, matematika digunakan di seluruh dunia sebagai alat penting di berbagai bidang, termasuk ilmu alam, teknik, kedokteran/medis, dan ilmu sosial seperti ekonomi, dan psikologi. Matematika terapan, cabang matematika yang melingkupi penerapan pengetahuan matematika ke bidang-bidang lain, mengilhami dan membuat penggunaan temuan-temuan matematika baru, dan kadang-kadang mengarah pada pengembangan disiplin-disiplin ilmu yang sepenuhnya baru, seperti statistika dan teori permainan.
Para matematikawan juga bergulat di dalam matematika murni, atau matematika untuk perkembangan matematika itu sendiri. Mereka berupaya menjawab pertanyaan-pertanyaan yang muncul di dalam pikirannya, walaupun belum diketahui penerapannya. Namun, kenyataannya banyak sekali gagasan matematika yang sangat abstrak dan tadinya tak diketahui relevansinya dengan kehidupan, mendadak ditemukan penerapannya. Pengembangan matematika (murni) dapat mendahului atau didahului kebutuhannya dalam kehidupan. Penerapan praktis gagasan matematika yang menjadi latar munculnya matematika murni seringkali ditemukan kemudian.


 

Etimologi

Kata "matematika" berasal dari bahasa Yunani Kuno μάθημα (máthēma), yang berarti pengkajian, pembelajaran, ilmu yang ruang lingkupnya menyempit, dan arti teknisnya menjadi "pengkajian matematika", bahkan demikian juga pada zaman kuno. Kata sifatnya adalah μαθηματικός (mathēmatikós), berkaitan dengan pengkajian, atau tekun belajar, yang lebih jauhnya berarti matematis. Secara khusus, μαθηματικὴ τέχνη (mathēmatikḗ tékhnē), di dalam bahasa Latin ars mathematica, berarti seni matematika.
Bentuk jamak sering dipakai di dalam bahasa Inggris, seperti juga di dalam bahasa Perancis les mathématiques (dan jarang digunakan sebagai turunan bentuk tunggal la mathématique), merujuk pada bentuk jamak bahasa Latin yang cenderung netral mathematica (Cicero), berdasarkan bentuk jamak bahasa Yunani τα μαθηματικά (ta mathēmatiká), yang dipakai Aristoteles, yang terjemahan kasarnya berarti "segala hal yang matematis".[9] Tetapi, di dalam bahasa Inggris, kata benda mathematics mengambil bentuk tunggal bila dipakai sebagai kata kerja. Di dalam ragam percakapan, matematika kerap kali disingkat sebagai math di Amerika Utara dan maths di tempat lain.

 SEJARAH MATEMATIKA :
Evolusi matematika dapat dipandang sebagai sederetan abstraksi yang selalu bertambah banyak, atau perkataan lainnya perluasan pokok masalah. Abstraksi mula-mula, yang juga berlaku pada banyak binatang[10], adalah tentang bilangan: pernyataan bahwa dua apel dan dua jeruk (sebagai contoh) memiliki jumlah yang sama.
Selain mengetahui cara mencacah objek-objek fisika, manusia prasejarah juga mengenali cara mencacah besaran abstrak, seperti waktuhari, musim, tahun. Aritmetika dasar (penjumlahan, pengurangan, perkalian, dan pembagian) mengikuti secara alami.
Langkah selanjutnya memerlukan penulisan atau sistem lain untuk mencatatkan bilangan, semisal tali atau dawai bersimpul yang disebut quipu dipakai oleh bangsa Inca untuk menyimpan data numerik. Sistem bilangan ada banyak dan bermacam-macam, bilangan tertulis yang pertama diketahui ada di dalam naskah warisan Mesir Kuno di Kerajaan Pertengahan Mesir, Lembaran Matematika Rhind.
Penggunaan terkuno matematika adalah di dalam perdagangan, pengukuran tanah, pelukisan, dan pola-pola penenunan dan pencatatan waktu dan tidak pernah berkembang luas hingga tahun 3000 SM ke muka ketika orang Babilonia dan Mesir Kuno mulai menggunakan aritmetika, aljabar, dan geometri untuk penghitungan pajak dan urusan keuangan lainnya, bangunan dan konstruksi, dan astronomi.[11] Pengkajian matematika yang sistematis di dalam kebenarannya sendiri dimulai pada zaman Yunani Kuno antara tahun 600 dan 300 SM.
Matematika sejak saat itu segera berkembang luas, dan terdapat interaksi bermanfaat antara matematika dan sains, menguntungkan kedua belah pihak. Penemuan-penemuan matematika dibuat sepanjang sejarah dan berlanjut hingga kini. Menurut Mikhail B. Sevryuk, pada Januari 2006 terbitan Bulletin of the American Mathematical Society, "Banyaknya makalah dan buku yang dilibatkan di dalam basis data Mathematical Reviews sejak 1940 (tahun pertama beroperasinya MR) kini melebihi 1,9 juta, dan melebihi 75 ribu artikel ditambahkan ke dalam basis data itu tiap tahun. Sebagian besar karya di samudera ini berisi teorema matematika baru beserta bukti-buktinya."[12]

Etimologi

Kata "matematika" berasal dari bahasa Yunani Kuno μάθημα (máthēma), yang berarti pengkajian, pembelajaran, ilmu yang ruang lingkupnya menyempit, dan arti teknisnya menjadi "pengkajian matematika", bahkan demikian juga pada zaman kuno. Kata sifatnya adalah μαθηματικός (mathēmatikós), berkaitan dengan pengkajian, atau tekun belajar, yang lebih jauhnya berarti matematis. Secara khusus, μαθηματικὴ τέχνη (mathēmatikḗ tékhnē), di dalam bahasa Latin ars mathematica, berarti seni matematika.
Bentuk jamak sering dipakai di dalam bahasa Inggris, seperti juga di dalam bahasa Perancis les mathématiques (dan jarang digunakan sebagai turunan bentuk tunggal la mathématique), merujuk pada bentuk jamak bahasa Latin yang cenderung netral mathematica (Cicero), berdasarkan bentuk jamak bahasa Yunani τα μαθηματικά (ta mathēmatiká), yang dipakai Aristoteles, yang terjemahan kasarnya berarti "segala hal yang matematis".[9] Tetapi, di dalam bahasa Inggris, kata benda mathematics mengambil bentuk tunggal bila dipakai sebagai kata kerja. Di dalam ragam percakapan, matematika kerap kali disingkat sebagai math di Amerika Utara dan maths di tempat lain.

Bidang-bidang matematika

Sebuah sempoa, alat hitung sederhana yang dipakai sejak zaman kuno.
Disiplin-disiplin utama di dalam matematika pertama muncul karena kebutuhan akan perhitungan di dalam perdagangan, untuk memahami hubungan antarbilangan, untuk mengukur tanah, dan untuk meramal peristiwa astronomi. Empat kebutuhan ini secara kasar dapat dikaitkan dengan pembagian-pembagian kasar matematika ke dalam pengkajian besaran, struktur, ruang, dan perubahan (yakni aritmetika, aljabar, geometri, dan analisis). Selain pokok bahasan itu, juga terdapat pembagian-pembagian yang dipersembahkan untuk pranala-pranala penggalian dari jantung matematika ke lapangan-lapangan lain: ke logika, ke teori himpunan (dasar), ke matematika empirik dari aneka macam ilmu pengetahuan (matematika terapan), dan yang lebih baru adalah ke pengkajian kaku akan ketakpastian.

Besaran

Pengkajian besaran dimulakan dengan bilangan, pertama bilangan asli dan bilangan bulat ("semua bilangan") dan operasi aritmetika di ruang bilangan itu, yang dipersifatkan di dalam aritmetika. Sifat-sifat yang lebih dalam dari bilangan bulat dikaji di dalam teori bilangan, dari mana datangnya hasil-hasil popular seperti Teorema Terakhir Fermat. Teori bilangan juga memegang dua masalah tak terpecahkan: konjektur prima kembar dan konjektur Goldbach.
Karena sistem bilangan dikembangkan lebih jauh, bilangan bulat diakui sebagai himpunan bagian dari bilangan rasional ("pecahan"). Sementara bilangan pecahan berada di dalam bilangan real, yang dipakai untuk menyajikan besaran-besaran kontinu. Bilangan real diperumum menjadi bilangan kompleks. Inilah langkah pertama dari jenjang bilangan yang beranjak menyertakan kuaternion dan oktonion. Perhatian terhadap bilangan asli juga mengarah pada bilangan transfinit, yang memformalkan konsep pencacahan ketakhinggaan. Wilayah lain pengkajian ini adalah ukuran, yang mengarah pada bilangan kardinal dan kemudian pada konsepsi ketakhinggaan lainnya: bilangan alef, yang memungkinkan perbandingan bermakna tentang ukuran himpunan-himpunan besar ketakhinggaan.
1, 2, 3\,\! -2, -1, 0, 1, 2\,\!  -2, \frac{2}{3}, 1.21\,\! -e, \sqrt{2}, 3, \pi\,\! 2, i, -2+3i, 2e^{i\frac{4\pi}{3}}\,\!
Bilangan asli Bilangan bulat Bilangan rasional Bilangan real Bilangan kompleks

Ruang

Pengkajian ruang bermula dengan geometri – khususnya, geometri Euklides. Trigonometri memadukan ruang dan bilangan, dan mencakupi Teorema Pythagoras yang terkenal. Pengkajian modern tentang ruang memperumum gagasan-gagasan ini untuk menyertakan geometri berdimensi lebih tinggi, geometri non-Euklides (yang berperan penting di dalam relativitas umum) dan topologi. Besaran dan ruang berperan penting di dalam geometri analitik, geometri diferensial, dan geometri aljabar. Di dalam geometri diferensial terdapat konsep-konsep buntelan serat dan kalkulus lipatan.
Di dalam geometri aljabar terdapat penjelasan objek-objek geometri sebagai himpunan penyelesaian persamaan polinom, memadukan konsep-konsep besaran dan ruang, dan juga pengkajian grup topologi, yang memadukan struktur dan ruang. Grup lie biasa dipakai untuk mengkaji ruang, struktur, dan perubahan. Topologi di dalam banyak percabangannya mungkin menjadi wilayah pertumbuhan terbesar di dalam matematika abad ke-20, dan menyertakan konjektur Poincaré yang telah lama ada dan teorema empat warna, yang hanya "berhasil" dibuktikan dengan komputer, dan belum pernah dibuktikan oleh manusia secara manual.
Illustration to Euclid's proof of the Pythagorean theorem.svg Sine cosine plot.svg Hyperbolic triangle.svg Torus.png Mandel zoom 07 satellite.jpg
Geometri Trigonometri Geometri diferensial Topologi Geometri fraktal

Perubahan

Memahami dan menjelaskan perubahan adalah tema biasa di dalam ilmu pengetahuan alam, dan kalkulus telah berkembang sebagai alat yang penuh-daya untuk menyelidikinya. Fungsi-fungsi muncul di sini, sebagai konsep penting untuk menjelaskan besaran yang berubah. Pengkajian kaku tentang bilangan real dan fungsi-fungsi berperubah real dikenal sebagai analisis riil, dengan analisis kompleks lapangan yang setara untuk bilangan kompleks.
Hipotesis Riemann, salah satu masalah terbuka yang paling mendasar di dalam matematika, dilukiskan dari analisis kompleks. Analisis fungsional memusatkan perhatian pada ruang fungsi (biasanya berdimensi tak-hingga). Satu dari banyak terapan analisis fungsional adalah mekanika kuantum.
Banyak masalah secara alami mengarah pada hubungan antara besaran dan laju perubahannya, dan ini dikaji sebagai persamaan diferensial. Banyak gejala di alam dapat dijelaskan menggunakan sistem dinamik; teori kekacauan (chaos mempertepat jalan-jalan di mana banyak sistem ini memamerkan perilaku deterministik yang masih saja belum terdugakan.
Integral as region under curve.svg Vector field.svg Airflow-Obstructed-Duct.png Limitcycle.jpg Lorenz attractor.svg Princ Argument C1.svg
Kalkulus Kalkulus vektor Persamaan diferensial Sistem dinamik Teori chaos Analisis kompleks

Struktur

Banyak objek matematika, semisal himpunan bilangan dan fungsi, memamerkan struktur bagian dalam. Sifat-sifat struktural objek-objek ini diselidiki di dalam pengkajian grup, gelanggang, lapangan dan sistem abstrak lainnya, yang mereka sendiri adalah objek juga. Ini adalah lapangan aljabar abstrak. Sebuah konsep penting di sini yakni vektor, diperumum menjadi ruang vektor, dan dikaji di dalam aljabar linear. Pengkajian vektor memadukan tiga wilayah dasar matematika: besaran, struktur, dan ruang. Kalkulus vektor memperluas lapangan itu ke dalam wilayah dasar keempat, yakni perubahan. Kalkulus tensor mengkaji kesetangkupan dan perilaku vektor yang dirotasi. Sejumlah masalah kuno tentang Kompas dan konstruksi garis lurus akhirnya terpecahkan oleh Teori Galois.
Elliptic curve simple.svg Rubik's cube.svg Group diagdram D6.svg Lattice of the divisibility of 60.svg
Teori bilangan Aljabar abstrak Teori grup Teori order

Dasar dan filsafat

Untuk memperjelas dasar-dasar matematika, lapangan logika matematika dan teori himpunan dikembangkan, juga teori kategori yang masih dikembangkan. Kata majemuk "krisis dasar" mejelaskan pencarian dasar kaku untuk matematika yang mengambil tempat pada dasawarsa 1900-an sampai 1930-an.[28] Beberapa ketaksetujuan tentang dasar-dasar matematika berlanjut hingga kini. Krisis dasar dipicu oleh sejumlah silang sengketa pada masa itu, termasuk kontroversi teori himpunan Cantor dan kontroversi Brouwer-Hilbert.
Logika matematika diperhatikan dengan meletakkan matematika pada sebuah kerangka kerja aksiomatis yang kaku, dan mengkaji hasil-hasil kerangka kerja itu. Logika matematika adalah rumah bagi Teori ketaklengkapan kedua Gödel, mungkin hasil yang paling dirayakan di dunia logika, yang (secara informal) berakibat bahwa suatu sistem formal yang berisi aritmetika dasar, jika suara (maksudnya semua teorema yang dapat dibuktikan adalah benar), maka tak-lengkap (maksudnya terdapat teorema sejati yang tidak dapat dibuktikan di dalam sistem itu).
Gödel menunjukkan cara mengonstruksi, kumpulan sembarang aksioma bilangan teoretis yang diberikan, sebuah pernyataan formal di dalam logika yaitu sebuah bilangan sejati-suatu fakta teoretik, tetapi tidak mengikuti aksioma-aksioma itu. Oleh karena itu, tiada sistem formal yang merupakan aksiomatisasi sejati teori bilangan sepenuhnya. Logika modern dibagi ke dalam teori rekursi, teori model, dan teori pembuktian, dan terpaut dekat dengan ilmu komputer teoretis.
 p \Rightarrow q \, Venn A intersect B.svg Commutative diagram for morphism.svg
Logika matematika Teori himpunan Teori kategori

Matematika diskret

Matematika diskret adalah nama lazim untuk lapangan matematika yang paling berguna di dalam ilmu komputer teoretis. Ini menyertakan teori komputabilitas, teori kompleksitas komputasional, dan teori informasi. Teori komputabilitas memeriksa batasan-batasan berbagai model teoretis komputer, termasuk model yang dikenal paling berdaya - Mesin turing.
Teori kompleksitas adalah pengkajian traktabilitas oleh komputer; beberapa masalah, meski secara teoretis terselesaikan oleh komputer, tetapi cukup mahal menurut konteks waktu dan ruang, tidak dapat dikerjakan secara praktis, bahkan dengan cepatnya kemajuan perangkat keras komputer. Pamungkas, teori informasi memusatkan perhatian pada banyaknya data yang dapat disimpan pada media yang diberikan, dan oleh karenanya berkenaan dengan konsep-konsep semisal pemadatan dan entropi.
Sebagai lapangan yang relatif baru, matematika diskret memiliki sejumlah masalah terbuka yang mendasar. Yang paling terkenal adalah masalah "P=NP?", salah satu Masalah Hadiah Milenium.[29]
\begin{matrix} (1,2,3) & (1,3,2) \\ (2,1,3) & (2,3,1) \\ (3,1,2) & (3,2,1) \end{matrix} DFAexample.svg Caesar3.svg 6n-graf.svg
Kombinatorika Teori komputasi Kriptografi Teori graf

Matematika terapan

Matematika terapan berkenaan dengan penggunaan alat matematika abstrak guna memecahkan masalah-masalah konkret di dalam ilmu pengetahuan, bisnis, dan wilayah lainnya. Sebuah lapangan penting di dalam matematika terapan adalah statistika, yang menggunakan teori peluang sebagai alat dan membolehkan penjelasan, analisis, dan peramalan gejala di mana peluang berperan penting. Sebagian besar percobaan, survey, dan pengkajian pengamatan memerlukan statistika. (Tetapi banyak statistikawan, tidak menganggap mereka sendiri sebagai matematikawan, melainkan sebagai kelompok sekutu.)
Analisis numerik menyelidiki metode komputasional untuk memecahkan masalah-masalah matematika secara efisien yang biasanya terlalu lebar bagi kapasitas numerik manusia, analisis numerik melibatkan pengkajian galat pembulatan atau sumber-sumber galat lain di dalam komputasi.
  




 NOTE : MATEMATIKA BUKAN BEBAN HIDUP TAPI MATEMATIKA ADALAH TEKNIK UNTUK  MENCAPAI HIDUP .

SUMBER : https://id.wikipedia.org/wiki/Matematika
gambar : https://id.wikipedia.org/wiki/Matematika

Read More

Friday, 15 April 2016

// // Leave a Comment

MOTIVASI UNTUK berjuang di zaman modern dan canggih teknologi.. ayo


Read More
// // Leave a Comment

kata - kata motivasi untuk berjwa nasional ( motivasi kehidupan )




Read More
// // 1 comment

motivasi kehidupan cocok yang membutuhkan motivasi ini keren dah






Read More
// // Leave a Comment

motivasi kehidupan kalau baca motivasi ini pasti akan bersemngat ayo lah.. come on






Read More
// // Leave a Comment

Motivasi belajar agar lebih ber-aksi dan berprestasi amin. ayo baca motivasi ini



Read More
// // 1 comment

MOTIVASI






Read More